1		BIB	m	III	11111	HIN	HIE	HEER	III	III
1	## HIBINI	H		1118	HIRM	BRIBI	Bilbi	11888	IIII	INNI

K23U 0513

Reg. No.:....

Name:

VI Semester B.Sc. Degree (CBCSS-OBE-Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) CORE COURSE IN MATHEMATICS 6B10 MAT: Real Analysis – II

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. State second form of the fundamental theorem of integral calculus.
- 2. State Lebesgue's integrability criterion.
- 3. Evaluate $\int_0^\infty \frac{dx}{1+x^2}$.
- 4. Evaluate $\int_0^\infty x^4 e^{-x} dx$.
- 5. Find the limit of the sequence of function $f_n(x) = x^n$ on [0, 1].

Answer any eight questions. Each question carries two marks.

- 6. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[1, \infty)$.
- 7. State nonuniform continuity criteria.
- 8. If $f: A \to \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on A.
- 9. Prove that every constant function on [a, b] is in $\Re[a, b]$.
- 10. If $f(x) = x^2$, for $x \in [0, 4]$, calculate the Riemann sum with respect to the partition $\dot{\varphi} = \{0, 1, 2, 4\}$ with tags at the left end points of the sub intervals.
- 11. Prove that the function d(x, y) = |x y| is a metric on \mathbb{R} .
- 12. Define closed set in a metric space. Give an example.
- 13. Investigate the convergence of $\int_0^1 \frac{1}{1-x} dx$.
- 14. Prove that $\int_1^\infty \frac{(1-e^{-x})}{x} dx$ diverges.

K23U 0513

15. Evaluate $\int_{1}^{\infty} \sqrt{x}e^{-x^2} dx$.

16. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

PART - C

Answer any four questions. Each question carries four marks.

- 17. Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and if they are both bounded on A, then their product f g is uniformly continuous on A.
- 18. If $f \in \Re[a, b]$, then prove that f is bounded.
- 19. Evaluate $\int_0^1 \frac{dx}{2}$.
- 20. Prove that B(m, n) = $\frac{\Gamma m \Gamma n}{\Gamma (m+n)}$.
- 21. Prove that $\Gamma m \Gamma \left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}} \cdot \Gamma(2m)$.
- 22. Show that the sequence of functions $\left(\frac{x^n}{1+x^n}\right)$ does not converge uniformly on
- 23. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f:A\to\mathbb{R}$. Then prove that f is

PART - D

Answer any two questions. Each question carries 6 marks.

- 24. State and prove continuous extension theorem.
- 25. Prove that a function $f \in \mathcal{R}[a,b]$ if and only if for every $\epsilon > 0$ there exists $\eta_{\epsilon} > 0$ such that if $\dot{\varPsi}$ and \dot{Q} are any two tagged partitions of [a, b] with $||\dot{\varPsi}|| < \eta_{\in}$ and $\|\dot{Q}\| < \eta_{\in}$, then $\left\lceil S(f,\dot{p}) - S(f,\dot{Q}) \right\rceil < \epsilon$.
- 26. Prove that if $f:[a,b] \to \mathbb{R}$ is monotone on [a,b], then $f \in \mathcal{R}[a,b]$.
- 27. State and prove Cauchy criterion for uniform convergence of sequence of